2020年09月26日

「医学統計の基礎のキソ 3」

20200926「医学統計の基礎のキソ 3」.jpg

浅井 隆 著
アトムス 出版

「医学統計の基礎のキソ 2」に続いて、シリーズ最終にあたる第 3 巻を読みました。カバーされている内容は、次のとおりです。

−選択基準 (inclusion criterion) と除外基準 (exclusion criterion)
−ランダム (無作為) 抽出区分 (random allocation)
−ランダム化比較研究 (randomized controlled trial:RCT)
−パワー分析 (power analysis)
−αエラー (α error) とβエラー (β error)
−ホーソン効果 (Hawthorne effect)
−プラセボ効果 (placebo effect)
−スタディグループ (study group) とコントロールグループ (control group)
−盲検化 (blinding)/マスキング (masking)
−二重盲検法 (double blind method) と一重盲検法 (single blind method)
−二重盲検ランダム化比較研究 (double-blind randomized controlled trial)
−コンソート声明 (CONSORT statement/Consolidated Standards of Reporting Trials statement statement)

 この中のパワー分析の power とは検出力を指しています。『差がある』のを、仮説検定で『有意差あり』として検出できる能力です。0.8 の場合、80% の確率で正しく有意差があると検出できます。

 これに関連する用語に、αエラーとβエラーがあります。前者は、『差がない』のに、仮説検定で『有意差あり』と誤った判定をすることで、後者は逆に『差がある』のに、仮説検定で『有意差なし』と誤った判定をすることです。

 医療で用いられる統計は、患者の治療に結びつくだけに、信頼性に関する情報は論文においても常にチェックするよう勧められています。実践的なシリーズ書籍だと思います。
posted by 作楽 at 21:00| Comment(0) | 和書(データ活用) | このブログの読者になる | 更新情報をチェックする

2020年09月25日

「秒速で人が動く数字活用術」

20200925「秒速で人が動く数字活用術」.png

小早川 鳳明 著
PHP 研究所 出版

 数字をビジュアル化することは、ビジネスパーソンが日常的に行なっていることだと思いますが、ありがちなのが、ビジュアル化自体に満足してしまい、目的に沿わせることを忘れてしまうことです。

 この本には、わたし自身が実践していることが正しいと確認できたことと、これまで実践してこなかったけれど今後取り入れたいことがありました。

 前者は、オーディエンスの設定と漏れの防止です。ビジュアル化に限らず、何かを見せるとき、わたしはオーディエンスを広げ過ぎず、決定権をもった方々に限定することを心がけています。著者は『説得する相手の顔をふたりだけ思い浮かべる』ことを勧めています。たとえば、会長と社長、社長と副社長といった、ふたりです。

 漏れの防止について著者は、人を動かすためには、抜け穴のない論理的な説明が必要だとし、抜けも漏れもないロジックツリーの作成を勧めています。ロジックツリーは、具体的には次のようなものです。

20200925「秒速で人が動く数字活用術」1.png

 後者のわたしが実践できていなかったことは、データのマスキングと相手がよく知っている数字の前段利用です。

 わたしは、データをすべて見せるようにしていましたが、著者は、自分の主張に直接関係しない数字は、敢えて見せない (マスキングする) ことを勧めています。たしかに、アウトプットがすっきりとし、どこを見てもらいたいのかが明確になります。

 また、相手を動かすために信頼を得る手段として、自分が主張したい数字の前段に、相手がよく知っている数字をもってくることは有効だと思えました。

 相手を説得するという目的を果たすために数字をどう使うかという視点では、参考になるメソッドが紹介されていると思います。
posted by 作楽 at 20:00| Comment(0) | 和書(データ活用) | このブログの読者になる | 更新情報をチェックする

2020年09月23日

「医学統計の基礎のキソ 2」

20200923「医学統計の基礎のキソ 2」.jpg

浅井 隆 著
アトムス 出版

医学統計の基礎のキソ 1」に続いて、シリーズ 2 巻目も読んでみました。カバーされている内容は以下のとおりです。

−観察研究 (observational study) と介入研究 (interventional study)
−後ろ向き研究 (retrospective study) と前向き研究 (prospective study)
−ケース・コントロール研究 (case-control study) とコホート研究 (cohort study)
−対象者間比較 (inter-subjective comparison) と対象者内比較 (intra-subjective comparison)/クロスオーバー研究 (cross-over study)
−生存率曲線 (survival curve) /カプラン・マイヤー曲線 (Kaplan-Meier curve)
−相関係数 (correlation coefficient)/ピアソンの r (Peason's r)
−感度 (sensitivity) と特異度 (specificity)
−陽性的中率 (positive predictive value) と陰性的中率 (negativee predictive value)
−相対危険度 (relative risk:RR)/リスク比 (risk ration) とオッズ比 (odds ratio:OR)
−NNT (number needed to treat)

 シリーズ 1 巻目に比べて、統計を使う場面が医療中心に移ってきた印象を受けました。たとえば、感度や特異度は役に立たないとし、陽性的中率や陰性的中率が紹介されている点などです。医療の現場の視点で感度や特異度を見たことがなかったので、新鮮でした。

 少しネット検索してみたところ、わかりやすい図がありました。

20200923「医学統計の基礎のキソ 2」1.png

 同様に、NNT という用語も知らずにいたので、参考になりました。NNT は、治療効果を得るのに必要な人数のことで、値が小さいほど治療が有効な確率が高いと判断できる指標です。ふたつの薬をふたつのグループに対して投与し、その結果を比べるという場合、帰無仮説を利用し、有意差を確認後、平均、標準偏差、信頼区間などの差を見るのだと想像していましたが、たしかに NNT のほうがずっと実際的です。

 医学統計は、知識も経験もまったくないので、基礎のキソでも学ぶべきことが多くありました。

【出典】
つねぴーblog@内科専攻医
posted by 作楽 at 00:00| Comment(0) | 和書(データ活用) | このブログの読者になる | 更新情報をチェックする

2020年09月03日

「難しいことはわかりませんが、統計学について教えてください!」

20200903「統計学について教えてください!」.png

小島 寛之 著
SBクリエイティブ 出版

数字に騙されないための 10 の視点 統計的な?」を読んだのをきっかけに、統計でどんなことができるか、工夫次第でうまく伝えられるようになれるかも……と思うようになり、統計関係の本を少しずつ読んでいて、これもその 1 冊です。

 本書では、ストーリー仕立てで統計の手法が扱われているのですが、『標準化』の例は参考にしたいと思いました。某大学のミスキャンパス候補 (ファイナリスト) の体型データをもとに、ミスキャンパスに選ばれた者がプロポーション面で、どう抜きん出ているのか数値であらわしてみようという試みです。

 以下のサンプルデータを見ると、ファイナリストはみなスタイルがいいように見えます。

20200903「統計学について教えてください!」1.png

 これを標準化すると、次のようになります。

20200903「統計学について教えてください!」2.png

 これらの数値はすべて、ファイナリストの平均にどれくらい近いかをあらわしています。(0 に近いほど平均に近いことをあらわします。) 赤枠の数字が目を惹きます。

 Aは、身長も体重も平均を大きく下回り、このサンプルのなかではとても小柄なのが、一目瞭然です。また、Fは、体重やウエストはほぼ平均なのにバストもヒップも平均を大きく上回り、いわゆる『ボンッキュッボン』なのが、わかります。

 標準化は、身長と体重といった単位の違うものの比較を容易にするメリットがあり、次の式で簡単に計算できます。(サンプル数によっては、それこそ電卓でも充分です。)

 {(データ) − 平均値} ÷ 標準偏差

 標準偏差は、データの偏差 ({(データ) − 平均値}) を二乗してから合計し、データの数で割り、その平方根を求めるとわかります。

 二乗してからルートを取るなどと面倒なことをする理由がわからなくても、標準化するメリットについては、このデータを見るとよくわかるので、巧みな説明だと思いました。
posted by 作楽 at 20:00| Comment(0) | 和書(データ活用) | このブログの読者になる | 更新情報をチェックする

2020年09月02日

「医学統計の基礎のキソ 1」

20200902「医学統計の基礎のキソ 1」.jpg

浅井 隆 著
アトムス 出版

 タイトルに「基礎のキソ」とあるとおり、統計の基礎が説明されていますが、その説明手順が、目からウロコでした。

 たとえば、有意差について説明するとき、帰無仮説 (null hypothesis) にもとづいて仮説検定を行ない、P 値をもとに帰無仮説を棄却するか、対立仮説を採択するかが決まるという流れで説明されることが多いように思います。しかし、本書では、いろいろある仮説検定をすべて素っ飛ばし、有意差と P 値の関係をいきなり説明しています。

 しかも、95% 信頼区間を求め、ゼロが含まれていれば有意差がなく、逆にゼロが含まれなければ有意差があるという関係を示し、仮説検定なしに有意差を推定できると説明しています。

 つまり、正しい統計結果を出せるようになるより、まずは統計結果を正しく理解できるようになることを目指しているわけです。

 統計には挫折してばかりという方には、星五つ級にお勧めの書籍です。次のような内容がカバーされています。

−有意差 (significant difference)、P 値 (P values)、有意水準 (significant level)
−帰無仮説 (null hypothesis)、仮説検定 (hypothesis test)
−信頼区間 (confidence interval)
−平均値 (mean) = 算術平均値 (arithmetic mean) / 中央値 (median)
−標準偏差 (standard deviation、SD、S、σ)
−四分位範囲 (inter-quartile range)
−平均の信頼区間 (confidence intervals of the mean)
−3 の法則 (rule of 3)
posted by 作楽 at 21:00| Comment(0) | 和書(データ活用) | このブログの読者になる | 更新情報をチェックする